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ABSTRACT

The propagation characteristics of coupled
rectanguiar dielectric waveguides are analyzed using
the electric field integral equation. In contrast with
the widely used subdomain basis Galerkin’s method,
in this work a novel set of entire-domain basis
functions is utilized. This set consists of plane wave
functions that satisfy Maxwell’s equations in each
guiding region. Computed dispersion curves are
presented for a mm-wave transmission line and
compare very closely to results of other techniques.
The present implementation can also deal with
integrated optical circuits and its main advantage is
superior numerical efficiency.

1. INTRODUCTION

The rectangular dielectric waveguide (RDW) is
the fundamental building block of integrated optical
circuits [1]. It has also found many applications in
mm and sub-mm wave integrated transmission lines
[2]. The propagation modes in these structures are
confined in the regions of the RDWs and can be
investigated by means of methods such as mode
matching techniques [3] and electric field integral
equations (EFIE) [4,5) The EFIE in its standard
form considers the electric field in the RDWs
domain as an equivalent polarization current.
Boundary integral equation approaches have also
been elaborated [6}

In this paper, the standard EFIE is employed
and is subsequently solved using Galerkin’s method.
Most of the existing implementations of this method
are based on the use of pulse subdomain basis
functions [5], that require a fine segmentation of the
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guide cross-section. Consequently, a large number of
unknowns is introduced, which renders the results
either unstable or numerically costly
Furthermore, from physical point of view,
subsectional expansion is not proper since the
discontinuous variation of the electric field creates
fictitious charges and currents on the boundaries of
the subdomains.

In order to overcome the aforementioned
drawbacks, a novel set of entire-domain basis
functions appropriate for RDWs is developed. This
set is constructed by discretizing an exact integral
representation of the electric field inside each
guiding region, The simple plane wave functions
derived satisfy Helmholtz’s equation, therefore
representing a physical expansion mechanism, valid
for both lossy and lossless materials. Even though
the modeling of RDWs with entire-domain
expansion terms has been suggested elsewhere
[4,78), the systematic implementation of plane wave
basis functions for the solution of the EFIE is
believed to be new. Besides the accuracy and the
simplicity of the proposed method, its major
advantage lies in its numerical efficiency, since very
satisfactory results can be obtained using only a few
expansion terms. Waveguides of more complicated
cross-section can also be analyzed, provided that
they decompose into a number of RDWs.

As an application of the developed technique,
numerical results in the form of propagation and
attenuation constants are presented for the
dominant and the first higher order mode of a mm-
wave transmission line. The excellent agreement
observed with previously published results [3] not
only establishes the validity of the present work,
but also reveals its computational efficiency.
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2. THEORY

The waveguide structure considered in the
analysis is depicted in Figure 1. It consists of L
RDWs embedded in an infinite dielectric layer of
permittivity €€, (¢, denotes vacuum’s constant).
This layer itself is part of a general planar stratified
medium (not shown), with or without conducting
ground planes. The whole structure is assumed to be
uniform along the propagation axis y. The position
of the i’th waveguide with width ¢, and height ¢}
is defined by its cross-section centre coordinates
(x0,2), while its relative permittivity &)
assumed constant. Losses are taken into account by
allowing the dielectric permittivities to be complex
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in general. Finally, all the materials are
characterized by the permeability p, of vacuum.
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Figure 1: Cross-sectional view of L RDWs embedded
in layer (0) of a planar stratified medium

The study of the propagation features of the
structure of Figure 1 is based on the following
rigorous integral representation [4] for the electric
field

L _ —
EM=k}Y 8¢ [[[GE ) B@ v @)
i=l v,

where 0¢&; =8§i)—8r0, k, =0\&/, and V, is
the volume occupied by the i'th RDW. The dyadic
Green’s function ﬁ(f,f’) is represented in the
Fourier-transform plane (kx,ky) and its spectral

dyad g(kx,ky;z,z’) is computed using well known
procedures [5]. The effects of the geometry of the
layered dielectric surround are incorporated in a
general manner into g.
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We consider fields of the form E(F) = a(p)e

(for el®t time dependence), where p = xX + zZ and B

is the propagation constant. A system of L coupled
integral equations is then derived from (1), with

unknown functions the field distributions
e;(p)(=12,,L) in the cross sections S; of the
RDWs. This system is numerically solved by

employing Galerkin’s method. To find an ideal mode
expansion mechanism, we express €;(p) in terms of
its two dimensional Fourier transform ([8] and

impose on it the homogeneous Helmholtz equation
for the 'th RDW:

(72 + k- (=0, k? = 0ye,ePn, @

This leads to the following condition between the
spectral variables k, and k,

Gkl =ul®),  u®=y&?-p>

Since k, and k, are not independent, the field €;(p)
is given by an inverse Fourier transformation of a

single spectral variable, which is chosen to be the
spectral angle @y, as

ju, (B)[(x—xb)sin @y +(z—2()cos Py

2n
& (x,z) = Iﬁg(Wk e ]d(l)k )
0

The above representation is rigorous and
expresses the field in a RDW as a superposition of
plane waves. Equation (4) can be utilized to
construct entire domain basis functions for the

unknown field €;(X,z). As a first step, the integral
in (4) is approximated by a finite summation over

N; angles ¢y, in the range [02r], where
O =(n-1)-27/N;, n=12,.,N;. Next we set
K = 0 B)singy, » kb, = u;(B)cos@y, (5)

fin(x,2) = e (xx0) g Kan(2-20) Cip = C(91g) 6

Finally, the electric field in the i'th RDW is
expanded in terms of N; basis functions fj,(X,2), as

NI
gxz)= Y Y aChfu(x2), (x2) €S,

a=x,y,z n=I
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Equations (5-6) define a set of entire-domain basis
functions, appropriate for RDWs. A remarkable
feature of these functions is their explicit
dependence on the wavenumber B, through the term
u;(B) of equation (3).

Employing the above expansion terms to the
Galerkin’s solution of the EFIE, leads to an
homogeneous linear system with unknown quantities

the field coefficients Ciy ,i=12,.,L, n=12,.N; and
a=Xx,y,z. The total number of unknowns is N, =
3(Ny+Ny+.+N;) and the order of the matrix is
N,o:XN;o- The propagation constant B is determined
by requiring the vanishing of the system
determinant. The elements of the system matrix are
given by infinite spectral integrals of the variable
k,, which are computed numerically in conjunction
with an efficient asymptotic extraction technique.

In constructing the set of basis functions (6), the
Gauss law has not been used yet. If we impose this
low on the field of equation (7), we obtain

V- (%20 )= 0= BCY = K Ch +KiCl ®

The above relation reduces the number of unknown
field coefficients from 3N; to 2N; and the new
system matrix is formed by applying the testing
procedure with the two of the Cartesian components
of the EFIE, as in [7].

3. RESULTS AND DISCUSSION

In order to validate the present technique and
demonstrate its advantages, we analyze the structure
of Figure 2. This shows a mm-wave monolithic
transmission line [3] in which the guiding region
consists of two (L=2) stacked RDWs. It should be
noted that no EFIE solution of such a configuration
has been reported in the literature. Some
preliminary results of the present implementation
are also given in [9].

Figure 3(a) depicts the dispersion diagram of this
waveguide, for the dominant and the first higher
order mode. Both modes are of EZ type, with
dominant field components in the z direction. There
are also included the results of the mode matching
technique [3], with which excellent agreement is
observed. The solid line corresponds to the dominant
TMZ mode of the surrounding (referred to as the
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dominant substrate mode), which defines the lower
limit for guided waves [5] It is pointed out that the
factor uy(B) in equations (2-5) may be real or
imaginary depending on the relative values of k(@
and PB. As a consequence, the expansion mechanism
(6) for the first (i=1) waveguide consists of either
plane waves or real exponential functions.

In Figure 3(b), the convergence of the
propagation constant of the fundamental mode of
Fig. 3(a) is plotted versus the number of basis
functions Ny and N, used in each waveguide, at the
frequency of 125 GHz. The resuits obtained when
N;=5 and Ny210 are practically indistinguishable.
Convergence to within 0.01 percent is achieved
using 5 basis functions for the first RDW (N;=5)
and 9 for the second one (N,=9). In this case, the
total number of unknowns is 3-(N;+N,)=42 (28 if
the Gauss law (8) is used) and the order of the
system matrix is 42 x 42. These numbers are by far
smaller than those required in an subsectional-basis
Galerkin’s solution of the EFIE. The efficiency of
the present technique is laying on the fact that the
expansion terms and the unknown electric field
satisfy the same equations.

Finally, Figure 4 shows the frequency variation
of the attenuation constant o (in dB per guided
wavelength Ag=2n/B) of the dominant mode of Fig.
3(a), if losses in the dielectric materials are included.
Again, very good agreement is observed between
the present results and those of [3]. In this case, the
factor uyB) (i=1,2) is complex, resulting in complex
basis function for both RDWs.

4. CONCLUSIONS

A new implementation of Galerkin’s method has
been developed for the integral equation analysis of
rectangular dielectric waveguides. This is based on
the use of entire-domain basis functions that satisfy
Maxwell's equations inside each guiding region.
Propagation characteristics are presented for a mm-
wave transmission line and compare favourably to
results of other well-established methods. The main
advantages of this method are simplicity, accuracy
and high numerical efficiency. The technique
presented in this paper is now being employed for
the study of field distributions, as well as
propagation and leakage characteristics of
integrated optical waveguides.
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Figure 2: Geometrical configuration of a mm-wave
transmission line [3] with parameters hy=86.4 um, hy=130 pm,
h3=309 um, a=0231 cm, w=241 um, ¢ =¢,(P=12.85 (GaAs) and

sr(1)=3. (polyamide).
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Figure 3: Dispersion diagram of the structure of Fig 2. (a)
Comparison between the present method results and those of
the mode matching technique [3]. (b) Convergence pattern of
the fundamental mode of Fig. 3(a) at the frequency of 125 GHz.
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Figure 4: Attenuation constant as a function of frequency of the
dominant mode of the waveguide shown in Fig. 2 with
£,=€,(P=1285(10-j0.002) and e (M=3.0(1.0-j0.001). Comparison
with the results of {3}



